|
|
matplotlib mplot3d_Examples 11_lorenz_attractor. |
H.Kamifuji . |
注:これはシンプルな非線形の ODE であるため、SciPy の ode ソルバーを使用する方が簡単ですが、このアプローチは NumPy のみに依存します。# Plot of the Lorenz Attractor based on Edward Lorenz's 1963 "Deterministic # Nonperiodic Flow" publication. # http://journals.ametsoc.org/doi/abs/10.1175/ # 1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2 # # Note: Because this is a simple non-linear ODE, it would be more easily # done using SciPy's ode solver, but this approach depends only # upon NumPy. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def lorenz(x, y, z, s=10, r=28, b=2.667): x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 stepCnt = 10000 # Need one more for the initial values xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values xs[0], ys[0], zs[0] = (0., 1., 1.05) # Stepping through "time". for i in range(stepCnt): # Derivatives of the X, Y, Z state x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(xs, ys, zs, lw=0.5) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Lorenz Attractor") plt.show() |
![]() Python 3.11.2 見直しました。上記のコードでは、下記のエラーが発生します。 Traceback (most recent call last): File "_:\lorenz_attractor.py", line 41, in <module> ax = fig.gca(projection='3d') ^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: FigureBase.gca() got an unexpected keyword argument 'projection' matplotlib 内部のエラーのようです。matplotlib の改修(先祖帰りバグの改修)を待つしかない。 Python 3.11.6 (matplotlib 3.7.1) では、下記のようなエラーがあり、実行できない。 Traceback (most recent call last): File "M:\______\lorenz_attractor.py", line 41, inPython 3.12.0 (matplotlib 3.8.1) では、下記のようなエラーがあり、実行できない。 Traceback (most recent call last): File "E:\______\lorenz_attractor.py", line 41, inPython 3.11.6 (matplotlib 3.7.1) 及び Python 3.12.0 (matplotlib 3.8.1) で、見直し中、新しいサンプル( mplot3d-lorenz-attractor-py ) を見つけ、下記のコードで、正常に実行できました。 """ ================ Lorenz attractor ================ This is an example of plotting Edward Lorenz's 1963 `"Deterministic Nonperiodic Flow"`_ in a 3-dimensional space using mplot3d. .. _"Deterministic Nonperiodic Flow": https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml .. note:: Because this is a simple non-linear ODE, it would be more easily done using SciPy's ODE solver, but this approach depends only upon NumPy. """ import matplotlib.pyplot as plt import numpy as np def lorenz(xyz, *, s=10, r=28, b=2.667): """ Parameters ---------- xyz : array-like, shape (3,) Point of interest in three-dimensional space. s, r, b : float Parameters defining the Lorenz attractor. Returns ------- xyz_dot : array, shape (3,) Values of the Lorenz attractor's partial derivatives at *xyz*. """ x, y, z = xyz x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return np.array([x_dot, y_dot, z_dot]) dt = 0.01 num_steps = 10000 xyzs = np.empty((num_steps + 1, 3)) # Need one more for the initial values xyzs[0] = (0., 1., 1.05) # Set initial values # Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i in range(num_steps): xyzs[i + 1] = xyzs[i] + lorenz(xyzs[i]) * dt # Plot ax = plt.figure().add_subplot(projection='3d') ax.plot(*xyzs.T, lw=0.5) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Lorenz Attractor") plt.show()Python 3.11.6 (matplotlib 3.7.1) 及び Python 3.12.0 (matplotlib 3.8.1) 共に、正常実行です。 ![]() |
mplot3d_Examples code: lorenz_attractor.py mplot3d-lorenz-attractor-py |
|